Malt Enzymes

9

111

The Key to Successful Brewing

Aleksandar Egi

MBAC Ontario Technical Conference January 31, 2014

· da Al-

Malt → Barley Malt

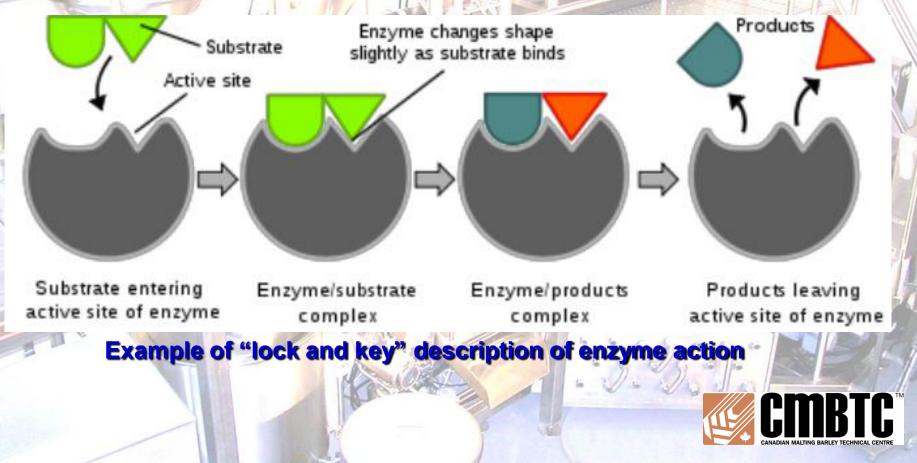
- Why Barley
 Availability? (not used for food)
 Adaptability
 - o Husk
 - Enzyme potential
 - o Tradition
 - o Breeding

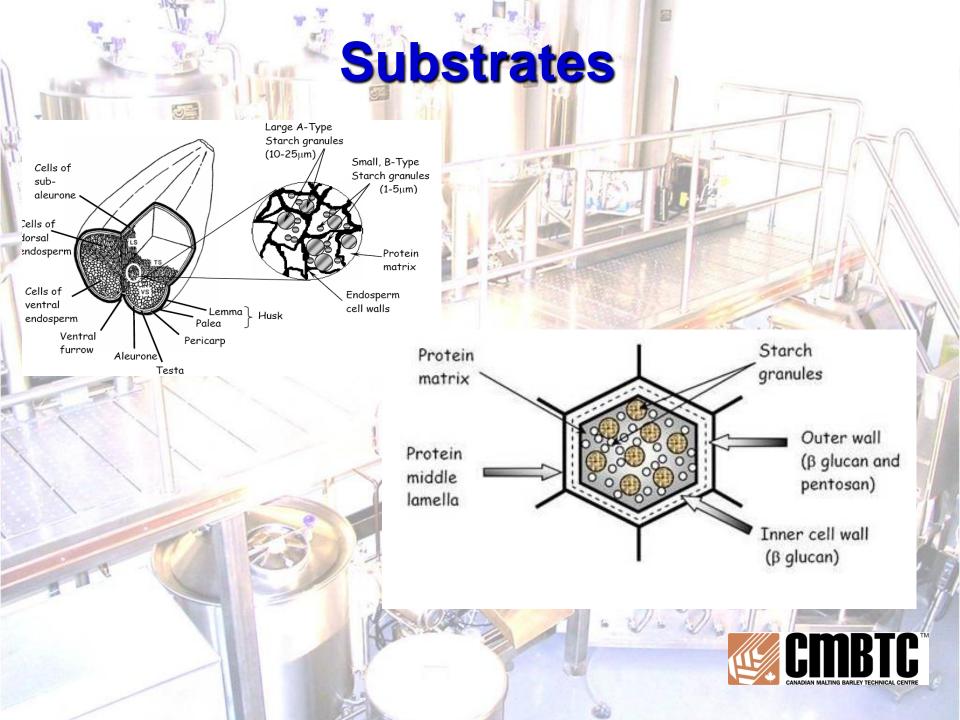
- What does the brewer want that barley has to offer? o Enzymes o Proteins
 - o Carbohydrates
 - o Filter aid

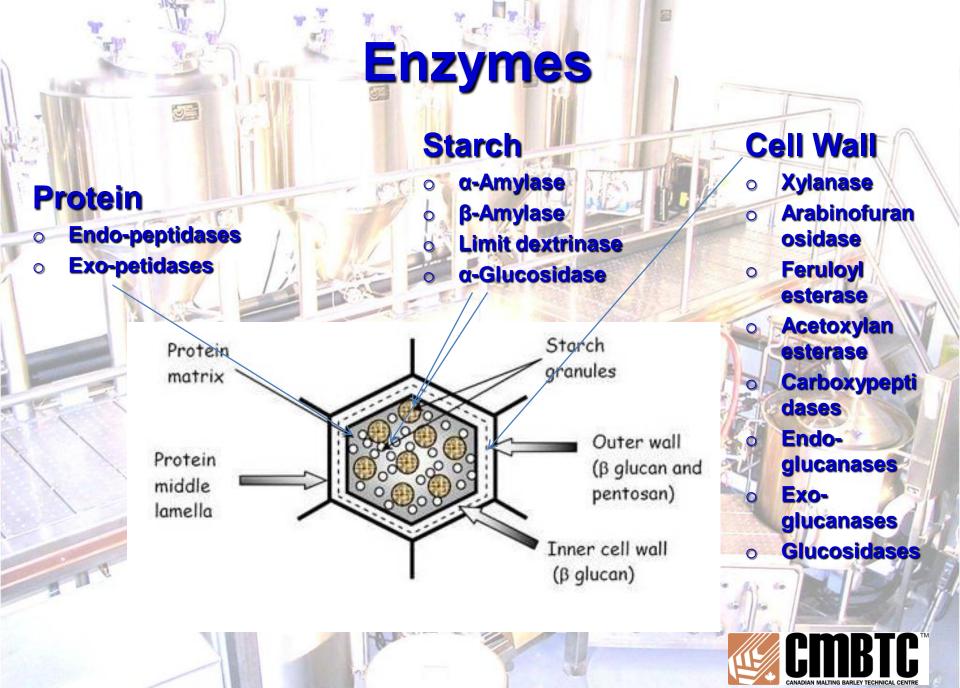
SE.

0

- Beer production (process of converting barley into beer) is probably the oldest example of applied biotechnology
- It involves endogenous enzymology in three main stages:
 - Malting (barley kernel)
 - Mashing (mash tun bioreactor)
 - Fermentation (yeast cell)



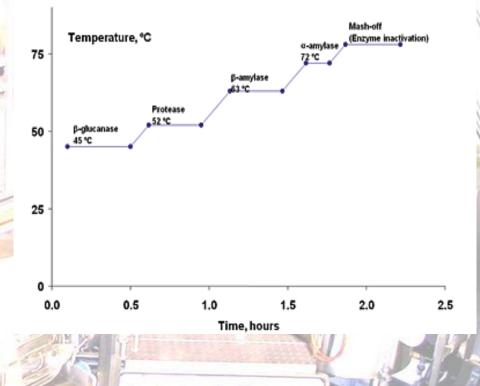

- Biochemical changes during the entire brewing process mostly involve the action of different enzymes which are essential in catalyzing these changes
- Enzymes are present in mature barley (β-amylase and carboxypetidases), finished malt (α-amylase, limit dexrinase, proteases, glucanases, pentosanases) and yeast
 Malt derived enzymes will be the focus



9

Enzymes (which are proteins) cause reactions to happen without being destroyed in the process

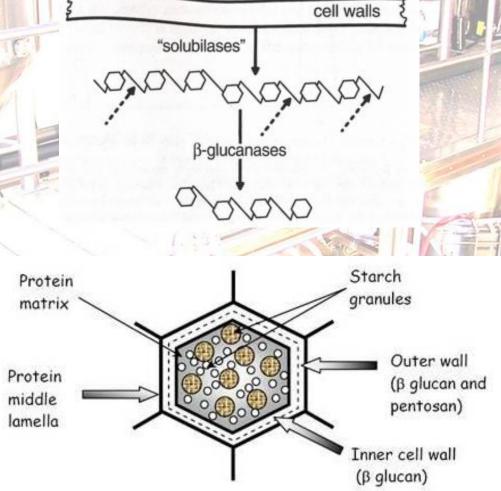
Mash Tun – Bioreactor (Enzyme Reactor)


) BALL VALV.

Enzymes	Opti <mark>mum</mark> (°C)	Deactivation (°C)		
Glucanases	40-50	60		
Proteinases	45-55	63		
β-Amylase	60-65	70		
α-Amylase	72-75	80		

MASH TUN

9


Malted barley is added to water and through controlled time and temperature, the malt enzymes are activated and starch in the malt and adjuncts are turned into simpler fermentable sugars. After conversion the Mash Tun contents are pumped over to the Lauter Tun.

CMBTC

Solubilisation Hydrolysis

a II

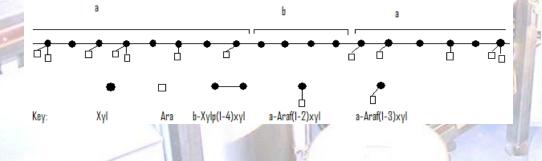
Enzymes

Cell Wall Xylanase 0 Arabinofuran 0 osidase **Feruloy** 0 esterase Acetoxylan 0 esterase Carboxypepti 0 dases Endo-Ο glucanases Exo-0 glucanases Glucosidases 0

Xylosidase

CMBTC

0-


Hemicelluloses and gums

- They make up about 10% of barley.
- Gums are water soluble.
- Hemicelluloses are soluble in hot alkali.
- These fractions are a series of material with different solubility (distinction between hemicelluloses and gums is rather vague).
- If the extraction of gums is done with water of increasing temperature the quantity of gum increases at the expense of the residual hemicelluloses.
- Chemically there are two groups: β-glucans and pentosans (arabinoxylans).

Arabinoxylans (pentosans)

- They have chains of β-D-xylopyranose joined trough (1,4) links
- A xylose residue may be unsubstituted, or be substituted on C-2, C-3 or in both positions with α -L-arbinofuranose units
- The substitution occur irregularly along the xylan backbone
- Some arabinose units are substituted with acetic and ferulic acid

Ac A

Ac

X-X-X-X-X-X-X-X

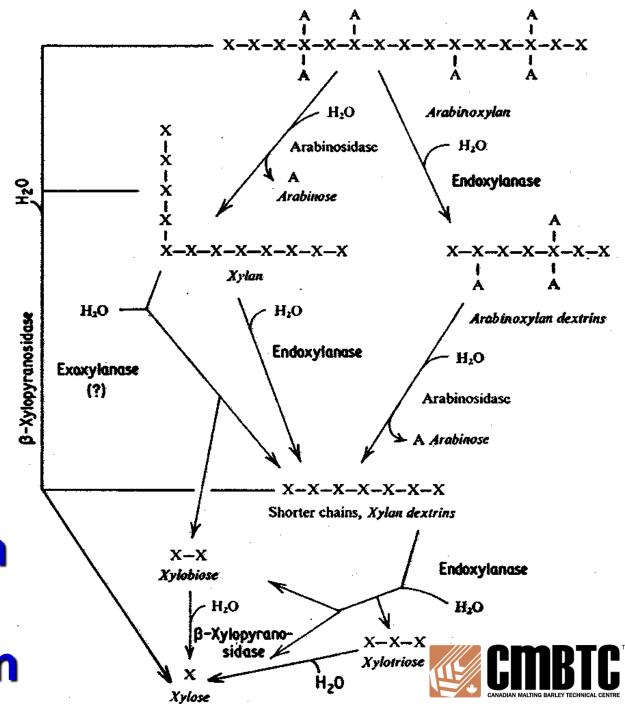
X-X-X-X-X-X

Ac A Ac

Arabinoxylan hydrolysis

Cell Wall Xylanase
Arabinofuran -osidase
Feruloyl esterase
Acetoxylan esterase
Xylosidase

- endo-1,4- β -xylanase (EC 3.2.1.8)
- β -D-xylosidases (EC 3.2.1.37)


U)

- α-L-arabinofuranosidases (EC 3.2.1.55)
- ← feruloyl esterase (E.C. 3.1.1.6)

Enzymatic Degradation of Arabinoxylan

9

End	osperm	cell	wall
	Store -	78.	

T T T

Outer

			C	ell Wall
	•	NST N	0	Xylanase
			0	Arabinofurar osidase
	Arabinose		0	Feruloyl esterase
○ ●	Acetic Ferulic		0	Acetoxylan esterase
	0	Arabinose Acetic	• Acetic	 Arabinose Acetic

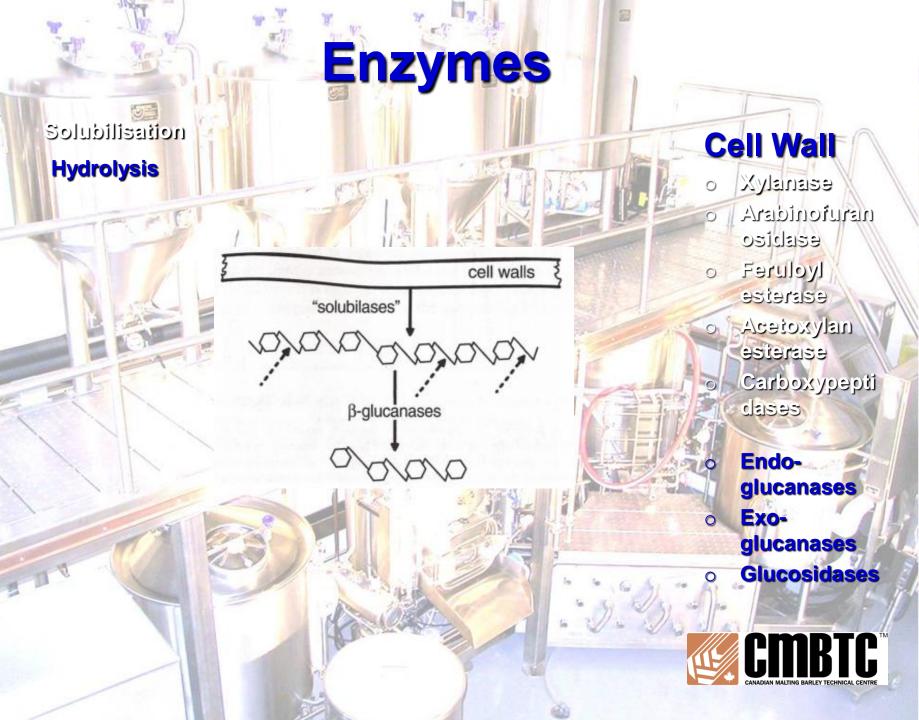
AX layer in the outer cell wall covers β-Glucans

- Outer AX layer is not complete (glucanases have access their substrate)
- Xylanolytic plus the enzymes that remove the arabynosyl-, feruloyl- and acetoyl- plugs all increase β-Glucan accessibility
- Another more substantial AX layer is buried deeper within the cell wall

β-Glucan solubilase

Protein cross links

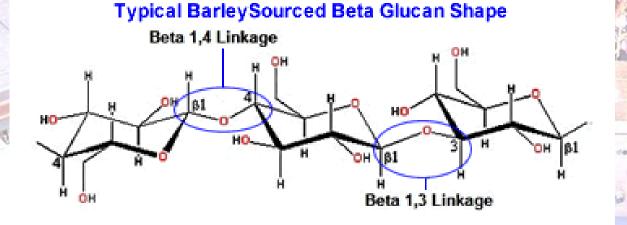
beta-glucan


- β-Glucan can be released from the cell wall trough the breakage of ester bond between glucan and protein
- **β-Glucan solubilase (Carboxypeptidase) is more heat stable than Endo- β-glucanases**
- 85% of the enzyme survives kilning
- Able to withstand 65°C for 1 hour
- May cause difficulties release of HMW β-Glucan

Cell Wall

Carboxypeptidases

cell walls

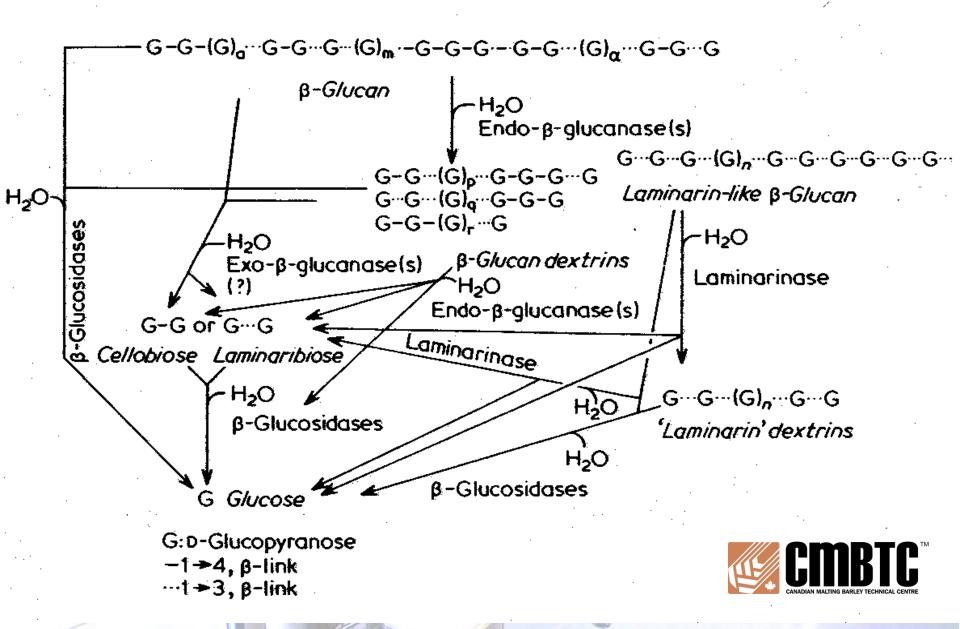


β-Glucans

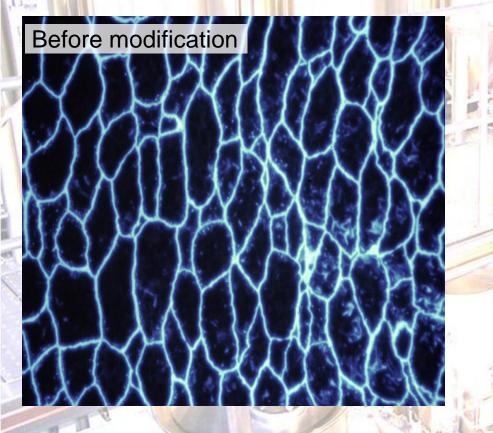
β-glucans consist of linear chains of β-Dglucopyranose units of various lenghts

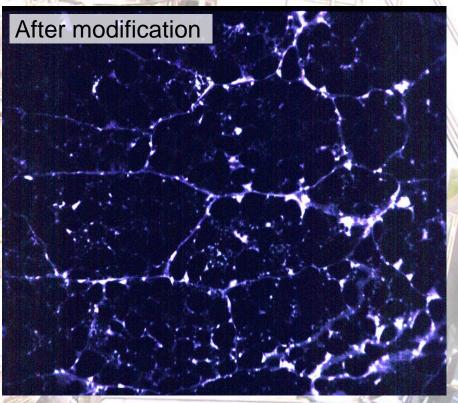
9

- The chains are unsubtituted and consist of a mixture of β-(1,4) bonds (3 to 4 glucose units) separated by a single β-(1,3) bond
 - Frequency of (1,3) to (1,4) links is about 3 to 7



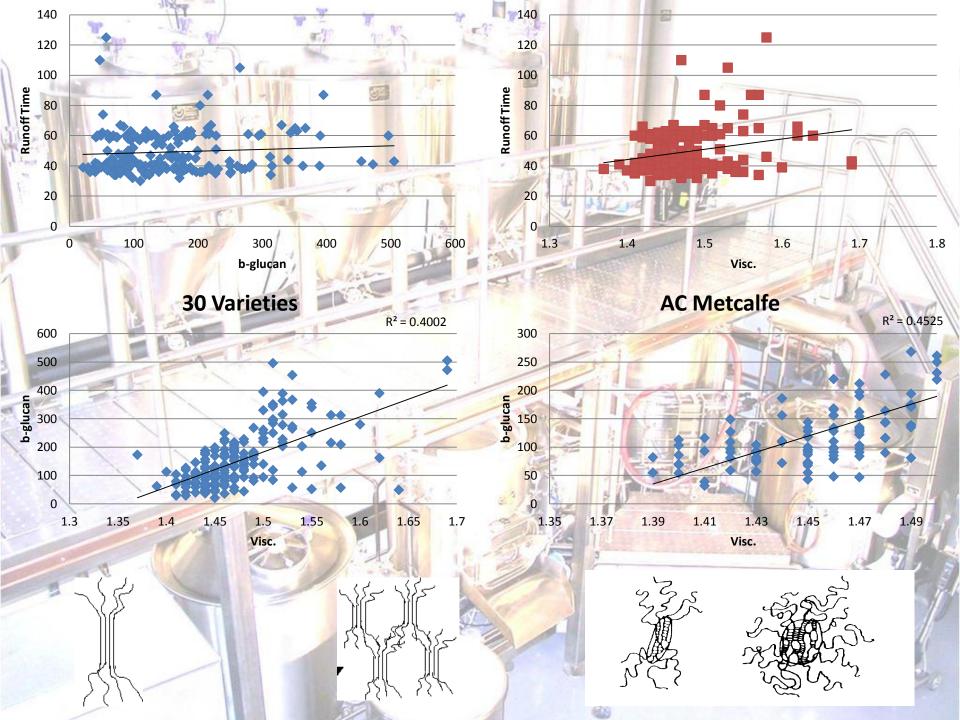
Enzymatic Degradation of β-glucan


- Endo β-1,3:1,4 glucanase hydrolyses β-1,4 links adjacent to β-1,3 links
- Endo β-1,3 glucanase hydrolyses β-1,3 links adjacent to β-1,3 links
- Endo β-1,4 glucanase hydrolyses β-1,4 links adjacent to β-1,4 links
- Exo-glucanase broad specificity
- β-glucosidase hydrolyzing β-oligosaccharides


Enzymatic Degradation of Beta-glucan

Breakdown of Barley β-glucan

9



Impact of b-glucans and arabinoxylans

- NSP have been implicated in numerous processing problems (reduced lautering rates, low recovery of malt extracts, poor filterability of wort and beer, formation of gels, hazes and sediments in beer)
- AX received little attention in brewing literature
- AX contribute to beer foam stability and produce viscous aqueous solutions causing production problems
- NSP impact directly correlated to concentration, molecular weight and structure (all affected by enzyme activity)
- Synergetic role of b-glucans and arabinoxylans should be studied more closely

Protein Biochemistry

Proteins represent 10-14% of the barley or malt kernel

- They can be:
 - Storage (hordeins and globulins)
 - o Structural

9

o Enzymes

Only about 35 – 45% of the malt protein is solubilised

Protein Structure

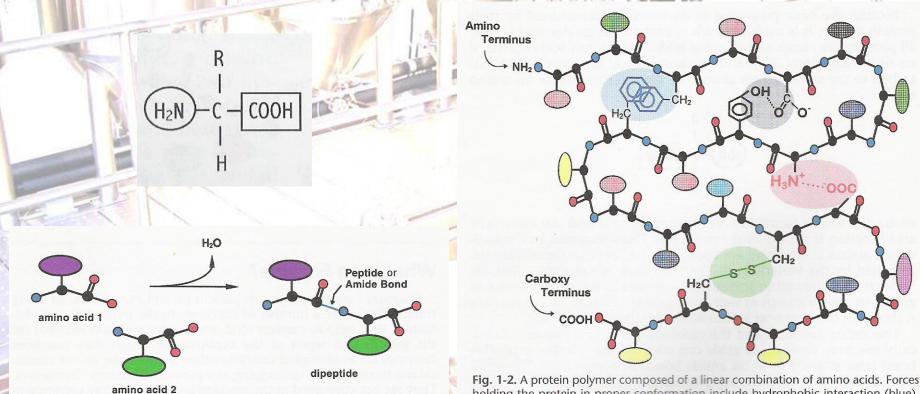
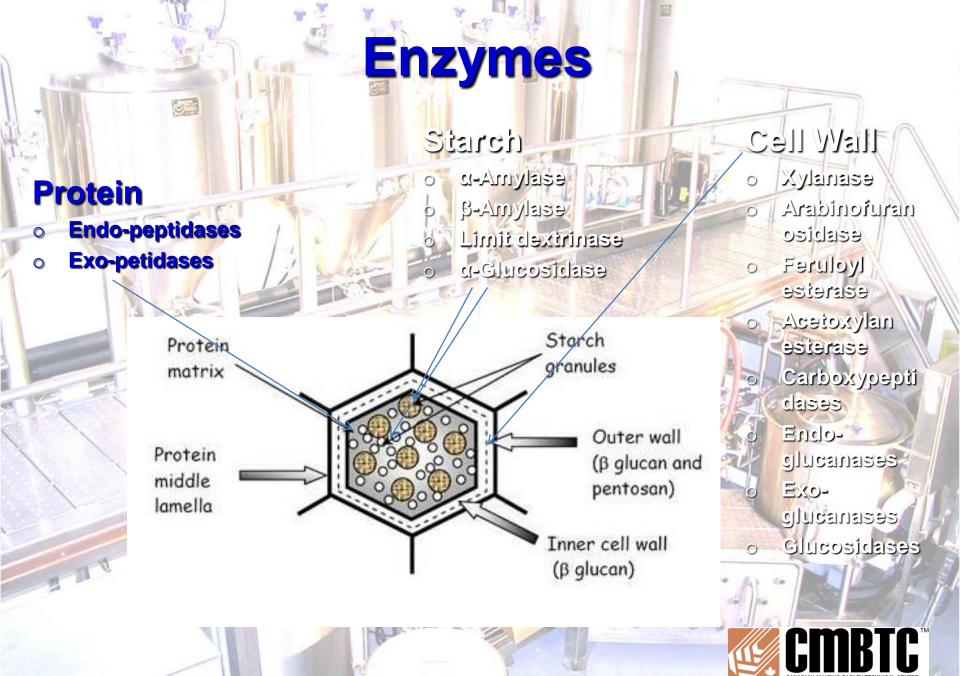


Fig. 1-1. Formation of a dipeptide from two amino acids joined with a peptide bond. Blue = nitrogen atom, black = carbon atom, red = oxygen atom.

9

holding the protein in proper conformation include hydrophobic interaction (blue), disulfide bonds (green), hydrogen bonds (gray), and electrostatic interaction (red).


Protein Structure

Primary: refers to amino acid sequence

9

- Secondary: refers to local arrangement of polypeptides in 3D space (α-helix)
- Tertiary: refers to arrangement of entire polypeptide chain in space
- Quaternary: non-covalent association of subunits of protein

Peptidases

9E

- Barley proteins are initially solubilized by endopeptidases and further degraded by exopeptidases
- Exo-peptidases catalyze protein hydrolysis from the terminal amino acid
 - Aminopetidases not relevant in mashing (activities in basic pH range)
 - Carboxypeptidases are termotolerant (more than endo-petidases) and present in abundance

Peptidases

- More than 40 endo-petidases have been identified in malt (classified as: cysteine-, metallo-, aspartic- and serine petidases)
- The efficacies of protein solubilisation
 - cysteine ≈ metallo > aspartic > serine ≈ 0
 - **Cysteine and metallo-petidases predominant role in releasing SP**
- Aspartic- petidases significant part in protein solubilisation
- Serine- petidases play no role in increasing SP levels
- All enzyme classes affect FAN formation

Peptidases

9E

- At the commercial mashing pH about 1/3 (32%) of SP in wort comes from ungerminated barley, about 1/2 (46%) is solubilised during malting and the rest is released during mashing
- Protein hydrolysis is mostly a function of proteolytic activity during malting
- Endogenous inhibitors are the main reason for limited proteolytic activity during mashing

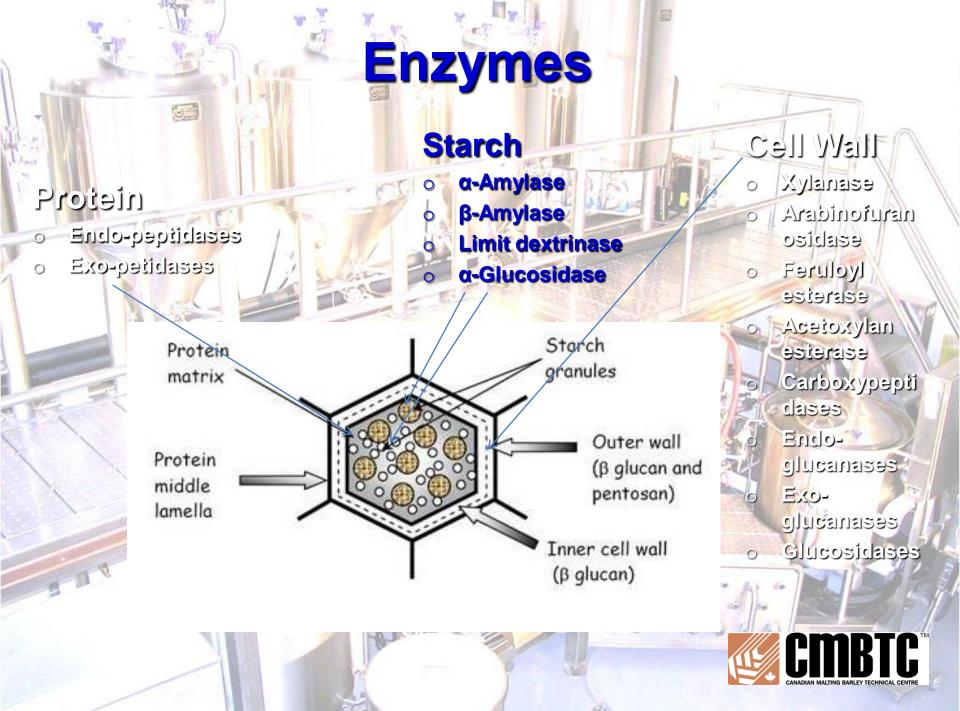
Types of Protein Material in Wort

PROTEINS

- Large molecules with unique identity
- o Lots of surplus protein is left behind in spent grain
- Some soluble proteins play essential role as enzymes

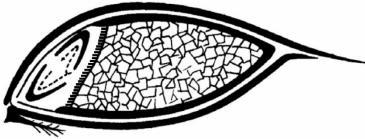
POLYPEPTIDES

- Long chain sequences of relatively high molecular weight
- Hydrophobic make up beer foam
- Acidic can form hot and cold break with polyphenols, and if not removed can cause colloidal instability in beer
- Contribute to texture and mouthfeel in beer



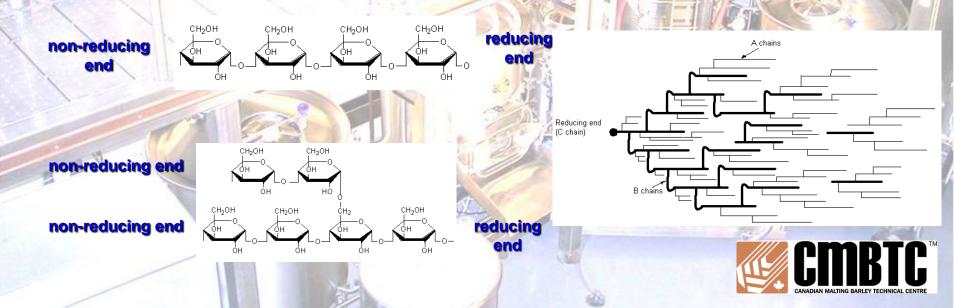
Types of Protein Material in Wort

PEPTIDES


- Short chain sequences of amino acids (2 10 units long)
- Minor effect on body and mouthfeel of beer
- **AMINO ACIDS**
 - o Make up 10 15% of TSN
 - Essential source of nutrients for yeast growth
 - Role in producing flavour active compounds in beer

Starches

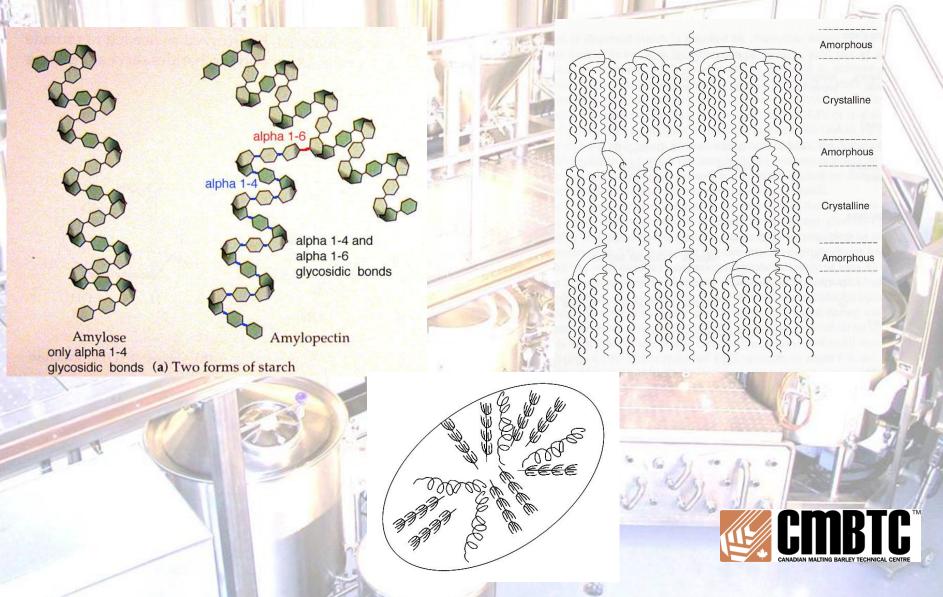
- Starch is produced by all green plants as an energy store
- It is the major component of barley grain (up to 65%)
- It provides the major part of the "brewers" extract:
 Soluble sugars formed during malting,
 - Sugars and dextrins arising from hydrolysis during mashing
- Starch molecules are found in starch granules within the endosperm cells



Starch Structure

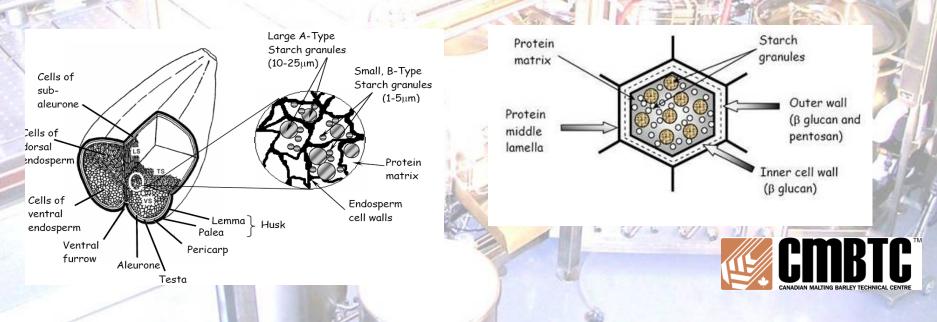
- Starch is a polysaccharide carbohydrate consisting of large number of glucose (monosaccharide) units
- The cereal starch is in granular form with two types of polysaccharide molecules: amylose and amylopectin
- Amylose makes up 22 26% of the polysaccharide
 - Amylopectin the balance (74 78%)

9E



Crystalline and Amorphous regions

- Both amylose and some A and B exterior amylopectin chains can form double helices (entwine)
- This promotes the formation of crystalline structures
- The degree of crystallinity influences the packing of helices within the molecule, which also influences the starch granule structure
- Barley is associated with 20-24% crystallinity
- Branching points constitute amorphous regions within the granules



Visual Representation

Barley type A and B starch granules

- Larger Type A granules (10-25µm) make up 10-20% of the granules by number but 85-90% by weight
- Smaller Type B granules (1-5µm) have higher gelatinization temperature
- During malting only 10% of starch is hydrolyzed (mostly Type B – greater surface to volume ratio)

Starch gelatinization temperature

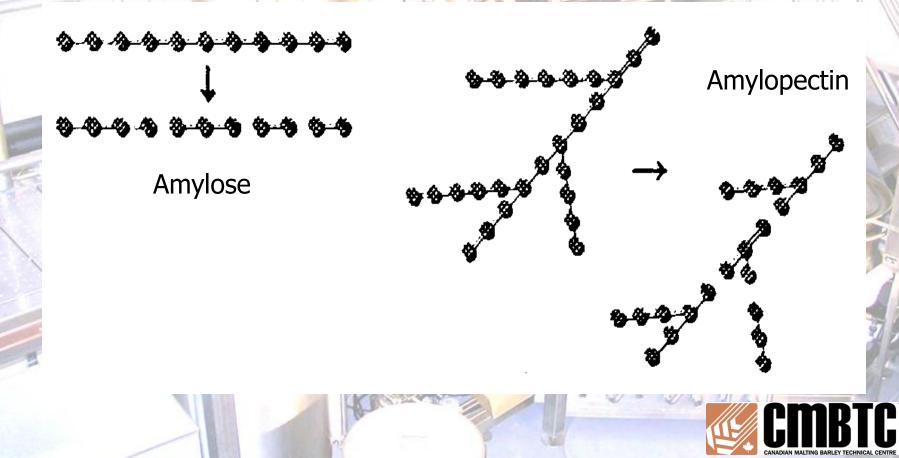
			Granule Size (µm)		
Source	Gelatinisation Temperature (°C)	Shape	В Туре	А Туре	
Barley	61-62	Round/ Lenticular	1-5*	10-25	
Wheat	52-54	Round/ Lenticular	1-5	15-25	
Maize	70-80	Round/ Polygonal	10-	15	
Rice	70-80	Polygonal/ Compound	2-8	9-30	
Sorghum	70-80	Round/ Polygonal	10-	12	
Oats	55-60	Polygonal/ Compound	2-	10	
Rye 60-65		Spherical/ Lenticular	1-8	10-30	

ÉÉÉÉ

* Small starch granules of barley gelatinise at 75-80°C

Enzymatic Degradation of Starch

- Principal amylolytic enzymes that are involved in starch hydrolysis are:
 - α-amylase
 β-amylase
 Limit Dextrinase
 - o α-glucosidase



α-amylase

- Malt α -amylase is an endoenzyme (working within the α -(1,6) bonds) attacking the α -(1,4) links within the starch chain producing: glucose, maltose and primarily a complex mixture of branched and unbranched oligosaccharides and dextrins
- When α-amylase is working within the α-(1,6) bonds it frees substrate (β-limit dextrin) that is then available for β-amylase to continue conversion to maltose
 - Attack is slower at the chain ends and stops near α-(1,6) branch points
 - Optimum pH (5.3-5.8), optimum T (70-75°C), Inactivation T (75-80°C) – Thermo-tolerant

α-amylase

α-amylase

- Extremely abundant so there is seldom a shortage
- Only in the highest adjunct grists

- Becomes limited for water only during very high gravities mashing (very low water/grist ratios)
- Inhibited by the high levels of sugars produced in such circumstances

β-amylase

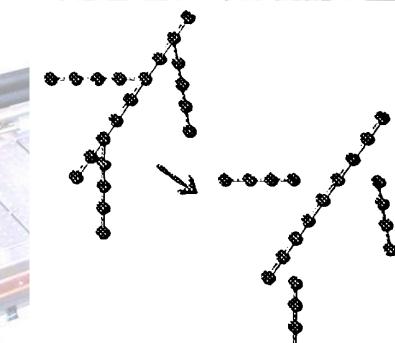
9È

- β-amylase (present in barley) is an excenzyme (works outside of the α -(1,6)links) attacking every second α -(1,4) links starting from non-reducing chain ends of amylose and amylopectin, producing maltose
- Enzyme does not hydrolyze α-(1,4) bonds near α-(1,6) branching points in amylopectin
- Amylopectin is degraded to maltose and β-limit dextrin where non reducing chain ends are 2 to 3 glucose residues away from branches
 - Optimum pH (5.4-5.6), optimum T (63-65°C), Inactivation T (68-70°C)

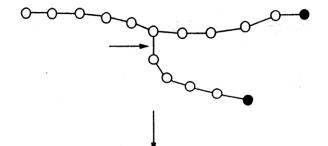
β-amylase 9 Action of β -Amylase on Starch Components Amylopectin ... 0-0-0 <u>.</u>&..&..&.&.&.&.& Amylose Amylose **\$~\$~\$**~\$ Amylopectin B-limit dextrin **CMBTC**[™]

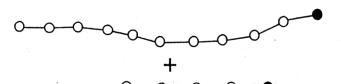
ANADIAN MALTING BARLEY TECHNICAL CENTR

β-amylase


- β-amylase has higher affinity with higher molecular weight starch molecules
- It also has higher catalytic activity with bigger substrate molecules (converts them faster)

9E


- Rapid action of α-amylase during mashing produces progressively more dextrins
- HMW amylose and amylopectin become limited



Limit Dextrinase is a debranching enzyme catalyzing the hydrolysis of α-1,6 –glucosidic linkages in starch

Action of Debranching Enzyme

Hydrolyzes alpha(1-6) links

SE

- Limit Dextrinase transcription (from a single gene in barley) reaches max after 5 days of germination
- It was suggested that prolonged germination would result in malt with more fermentable worts
- With lager malts with max kilning temp of 75°C enzyme survival was 75%
- With ale malts with max kilning temp of 95°C enzyme survival was 13%
- Limit Dextrinase thermostability is comparable to βamylase

- Reason for limited action during mashing is that it is in inactive bound form (79-92% latent state complexed with LMW inhibitor)
- Latent form is relatively heat stable binding protects the enzyme which is steadily released during mashing
- Lowering the mash pH (from 5.5 to 5) significantly enhances fermentability of resulting wort
- By reducing the levels of dextrins in beer Limit
 Dextrinase also helps to prevent dextrin gel formation
 and reduces difficulties with filtration

- Fermentability (%) Full Malt = 69.9 + 0.017*a + 9.602*b+ 0.195*c + 0.007*d - 0.5375e - 0.0008d*e (R² = 0.91)
- Fermentability (%) 30% Rice adjunct = 68.1 + 0.0188*a
 + 6.898*b + 0.1945*c + 0.0066*d + 0.393e 0.0006d*e
 (R² = 0.82)
 - where a= α-amylase, b=Total Limit Dextrinase, c= KI (%), d=Total β-amylase, e=β-amylase thermostability

Evans, D.E. et al. 2005 JASBC 63, 185-198

α-Glucosidase

- Hydrolyses the last α-1,4–glucosidic linkages at the nonreducing end of amylose and amylopectin, yielding glucose
- Termolabile and of limited significance during mashing

9

T I V

 May improve the efficiency of β-amylase by removing maltose (product inhibition)

> $G \cdot G \cdot G \cdots$ or $G \rightarrow G^* + H_2 O$ (Substrate - G) + G^* or $G \cdot G^*$ or $G \rightarrow G \cdot G \cdots$ $\alpha \cdot GLUCOSIDASE$ Glucose

> > etc.

Other factors

	Reveal Street		1		1000 B		12200							
	Copeland	DP	a-Amyl	Con. Time	Barle	y pro	opert	ties	Meto	alfe	DP	a-Amyl	Con. Time	
1	2004	119	45	11	• Va	riety	- 15		20	04	139	58	9	
-	2005	118	42	10	• En	viro	nmer	nt L	20	05	138	49	9	
1	2006	128	42	13	• En	dos	berm		20	06	142	55	12	
1	2007	125	57	23	- 18 / C	cture		a for	20	07	138	66	21	0
	2008	137	52	12	• Sta	arch	gran	ule	20	08	147	63	10	1
	2009	136	57	9		e an	_	2	20	09	158	76	7	
	2010	112	43	16	ge	latin	isatio	on	20	10	152	64	10	V
	2011	123	49	15	• Pr	otein	mat	rix	20	11	151	66	13	
1	2012	131	61	16	• En	zym	8		20	12	158	69	17	
	2013	126	50	13.8	A 11/181	ailab	1. 2		20	13	147	63	12	J
			2004 2	2005 2000	6 2007	2008	2009	2010	2011	2012	2013	R	J.	1
		Average Protein Average	11.8	11.7 11.9	12.3	11.7	11.1	11.6	11.4	11.9	11.1		25	11/10
		ТКŴ	43.2	43.5 42.7	39.4	45.2	44.4	41.8	44.4	40.4	48.2		NDT	
					and the second se									

Im Himmel gibts kein Bier drum trinken wir es hier! In Haven there is no Beer therefore we drink it here!

Thank You!